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Integral-transform theory is used to solve the problem of sinusoidal initial perturba- 
tions in a planar stagnation counterflow, with extension to {he axisymmetric case. The 
two incompressible fluids are assumed to be inviscid, so that across the initially plane 
interface the velocity shear is a velocity slip which grows linearly with the distance 
from the stagnation point. The solution for the interface displacement shows a com- 
petition between an amplification produced by the shear instability and a decay pro- 
duced by the stretching effect of the accelerating unperturbed flow. At early times the 
interface perturbation grows exponentially with time, but eventually the stretching 
process reduces the interface displacement to a magnitude comparable to the initial 
perturbation. 

1. Introduction 
The classical studies of the linear instability of two incompressible, inviscid, parallel 

flows with constant velocities were made by Helmholtz (1868), Kelvin (1871) and 
Rayleigh (1879). Although these studies have been extended to include viscosity, com- 
pressibility, magnetic interactions and other real-gas effects, little effort has been made 
to extend the classical studies to  non-parallel flows. For example, in describing a stag- 
nation-counterflow type of situation in the shock layer of an entry probe with ‘massive 
blowing’, Compton (1972) was forced to use the classical Kelvin-Helmholz formula for 
constant parallel flows. Because the stagnation-counterflow geometry occurs in a wide 
variety of fluid-dynamics problems, detailed study of this flow geometry should be 
warranted. 

2. Equations and boundary conditions 
We examine the development of displacement perturbations introduced into an 

initially plane interface between opposing stagnation flows. A typical cross-section of 
the counterflow configuration is shown schematically in figure 1. (For illustrative 
purposes, the sinusoidal perturbation has been greatly magnified.) Surface tension is 
neglected. Each flow is assumed to be homogeneous, inviscid and incompressible. 
These assumptions imply irrotationality; thus the velocity field V in each region can 
be determined from the gradient of the sum of a time-independent potential 4 for the 
unperturbed flow and a time-dependent potential $ for the perturbed flow. The un- 
perturbed flows are given by $j = i a j (x2 -  y2), where the subscripts j = 1 and 2 
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FIUTJRE 1.  A schematic representation of the perturbed interface in a stagnation counterflow. 

designate the upper and lower flows, respectively. Application of the incompressible 
continuity equation shows that the perturbation potential is harmonic in each region, 
i.e. 

V24j (X,  y,f) = 0, (1) 

with the requirement that qbj(x, y, t )  -+ 0 for y+ & co. 
It should be noted that perturbations in the z direction have been omitted, thereby 

eliminating consideration of longitudinal vortices induced along the curved stream- 
lines by centrifugal forces. Although such perturbations have been studied and 
measured near stagnation points on blunt bodies (Kestin & Wood 1970), there appa- 
rently exists insufficient work to permit a direct quantitative comparison with the 
Kelvin-Helmholtz type of shear instability that is addressed in this paper. However, 
it seems reasonable to expect in many cases that shear instability will be more import- 
ant near the interface than the centrifugal instability. For example, when the free- 
stream turbulence is low, it appears that centrifugal instability effects will be 
unimportant (Schlichting 197 1). 

Define q(z, t )  as the interface position relative to the plane y = 0. Linearization in 
accordance with small-amplitude wave theory permits the evaluation of 4, and its 
derivatives at y = 0, rather than at y = q. 

As the interface is approached in each region, the pressure is given by 
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where 8 is the stagnation pressure and pj is the density. From the requirement that no 
pressure discontinuity exists a t  the unperturbed interface at y = 0,  we require 

(3) 

After equating the two pressures given by (2) and using (3), the dynamic boundary 
condition for the interface is 

a1l.z = (PZlPl)* = r. 

(2) -re(%) + a l x  [(g) - r  (%)I = 0 a t  y = 0. (4) 

The corresponding kinematic boundary conditions are that the normal velocities of the 
fluids at  y = 0 must match the rate of change of the interface displacement 7. Together 
with (3), these conditions can be expressed as 

For initial conditions, we choose 

T ( X , O )  = ec0s (kox+a) ,  (7) 

(8) (ar/at),, , = e[cl cos (k, x + a )  + v2 k, x sin (k, x + a)] ,  

where e is an arbitrarily small amplitude factor, k, is an initial perturbation wave- 
number, a is a phase angle and r ~ ~ ,  are arbitrary constants. The form of the (arlat),, , 
perturbation given by (8) was chosen so that the ar/at and the ag/ax terms give similar 
contributions to the velocity perturbations in (5) and (6). For the purpose of integral- 
transform evaluation, terms involving 7 and its derivatives at  x = f 03 may be set 
equal to zero. A heuristic way of visualizing this assumption is to consider the pertur- 
bations to be truncated at  large finite positive and negative values of x ,  and then to let 
the truncation distances approach & CQ. As a verification of the procedure, the final 
solution will be shown to satisfy the governing equations (1)-(8). 

A further indication of the validity of the procedure is given in appendix A, where 
the stagnation counterflow is assumed to be embedded in a velocity profile which takes 
on constant values at large x. 

3. The solution for the interface displacement 
Development of a partial differential equation for the interface displacement 

A systematic approach to this initial-value problem is to apply integral-transform 
theory. We begin by applying a Fourier transform with respect to x. The convention in 
the notation for this Fourier transform operator and its inverse 9 - l  is 

f ( k )  = 9{f} = 1 c0 f ( x )  ecikx dx, 1 --a, 

f ( x )  = g-'{f> = '1- f(k)eikXdx. 
27r -a 

(9) 

14-2 



404 G. G. Erickson and D. B. Olfe 

The following transformations are considered ; 

Qj(k, y, t )  = 9#*, Y(k, t )  = 97. (10) 

a2aqay2- k2Qj = 0, cDj = $(k, t )  eFlklY, ( l l a , b )  

Transformation of (1) yields 

where in (1 1 b )  the minus sign is chosen in the exponent for y > 0 and the plus sign for 

The application of (10) and (11) to the boundary conditions (4), (5) and (6) leads to 
y < 0. 

the following equations in the Fourier transform space; 

F1= h [ a l ( l + k & ) - $ ]  Y ,  

F - -L[a l ( l+k&)-~: ]  - rlkl y ,  

[: - ( + k&)] - [ rf  - a, (1 + k &)] ( r ~ , )  = 0, 

where the operator - (1 + k 8/ak) Y represents F { x  8r/ax}. Following the elimination of 
Fl andF2among (1 2)-( 14), a second-order partial differentialequation for Y is obtained. 
After taking the inverse Fourier transform of this equation for Y ,  the following elliptic, 
second-order, partial differential equation for the interface displacement is found: 

Equation (15) represents a combination of the two solutions to Laplace's equation ( l ) ,  
the two kinematic boundary conditions ( 5 )  and (6) and the dynamic boundary con- 
dition (4). 

The solution to the partial diflerential equation for the interface displacement 
An algebraic expression for 7 in transform space may be derived from (1 5) by taking a 
Laplace transform with respect to t and a Mellin transform with respect to x. The con- 
ventions in the notation for the Laplace and Mellin transforms, designated by the 
operators 2' and A, are 

and 

g(p)  = 6P{g(t)}  = Srn g(t) e-ptdt, 
0 

m 

h(s) = A { h ( x ) }  = 1 h(x)  b-l dx, 
0 

N + i m  

2na N-ia, 
h(x) = A-l{h(s )}  = -. &(s)x-.ds. 

As is customary, g(p) is required to have no singularities in the region R e p  3 c,  
whereas h(s) is to be absolutely convergent in an infinite strip parallel to (and perhaps 
including) the imaginary s axis. 
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The application of the Laplace transform with respect to t to (15) eliminates the 
derivatives oft, and also incorporates the initial conditions (7) and (8) into the solution. 
The choice of a Mellin transform with respect to xis natural because it eliminates the x 
derivatives according to the relationship 

A{xnanf(@/axn} = ( - i ) n ~ ( ~ + i )  ... ( s + n - l ) r ( s ) ,  

where r(s) is the gamma function. It should be noted that the Mellin transformation 
brings in no values or derivatives of f ( x )  at x = 0. This fact is of special significance 
because it justifies the use of the integration limits (0, a) in (17), rather than choosing 
another transform which has integration limits ( -a, a). Mathematically, the Mellin 
transform implies that two different solutions for x < 0 and x > 0 are possible (provided 
the pressure and x velocity components are continuous across x = 0). Physically, this 
means that the left and right regions of the stagnation counterflow are decoupled from 
each other. Such a decoupling could be heuristically anticipated from (15) because the 
xnanq/axn terms originate from products of the unperturbed flow velocities and per- 
turbation quantities. Hence the advective flow away from the stagnation point 
prevents communication across x = 0. For the remainder of this paper, x will be 
implicitly restricted to x 2 0. However, the results are applicable for -a < x < 00 

since the same formulae are valid for negative x .  Define the non-dimensional variables 

5 = k 0 x ,  m = (1  +r) / ( l  + r 2 ) ,  7 = malt (18) 

and set Z ( t , p )  = q r ( t , t ) L  W( t , s )  = ~ { Z ( t , P ) l .  (19) 

Then, taking the Laplace transform of (15), we find that 

a 2 2  az 
at 2a;tzT + 2a1[2a, + (1 + r ) p ]  5- +p[(1  + r )  a, + (1 + r 2 ) p ]  Z 

After introducing the initial conditions and applying the Mellin transform, the follow- 
ing algebraic solution is obtained: 

w ( ~ , p )  = € { p  + gl + mal + (a2 - 2ma1) s} r(s) COB ( ins  + a) 
x {p2 + mal( 1 - 2s)p  + [2aqs(s - I)/( 1 ++)]}-I, (21) 

with 0 < Res < 1. In  (21) the products r(s)cos(&ns+a) and sI'(s)cos(&rs+a) 
originate from ~ ( C O S  (6 + a)} and A{[ sin (5 + a)}, respectively. 

The solution for the interface displacement is just d - 1 9 - 1 {  W(s,  p ) } ,  or 

Inspection of (21) shows that W(5, p )  has two first-order poles in thep plane and is well 
behaved otherwise. Thus the inverse Laplace transform may be evaluated by residue 
theory to give 

~ - S G ( ~ , ~ ) ~ S ,  o < N < 1, (23) 
N - i a ,  

where G(s, 7 )  = [cosh {Q(s) 7 }  + A(s )  Q-l(s) sinh {Q(s) T } ] ,  

A ( s )  = ~+a,/ma,+(a,/ma,-l)s, 
Q(s) = *[i + 4 8 2 ( ~ - - ~ 2 ) ] 4 ,  0 = (1 - r ) / ( l  +Y). 
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Although Q(s) is multi-valued in the s plane, examination shows that G(s, r )  is 
single-valued. To aid in the evaluation of (23), we note that the gamma function r(s) 
may be analytically continued into the negative half-plane. Along the negative real 
axis r(s) has an infinite number of poles at integer values of s. In particular, near these 
poles the representation for r(s) reduces to (see, for example, Lebedev 1972, p. 3) 

r(s) = ( - l)l/I!(s + I )  +a regular part, I = 0, 1 ,2 ,  . . . . (25) 

Therefore we evaluate the inverse Mellin transform by connecting the ends of the 
infinite line segment with an infinite semicircular contour closed to the left. Evaluation 
of the residues gives the following solution for the interface displacement: 

It is easily verified that (26) satisfies the prescribed initial conditions (7) and (8), and 
also the governing equation (15). In  appendix B, we derive expressions for the pertur- 
bation velocity potentials, and verify that the interface displacement (26) and the 
velocity potentials satisfy boundary conditions (4)-( 6). 

4. Asymptotic limits of the infinite series solution for the interface dis- 
placement 

Introduction 

For convenience, let us present (26) in a more explicit form: 

( - [e-r) '  
~ cos ( -: + a)  (cosh {*r[ 1 - 4O2(1 + I2)]*} 7(5,7) = ee-47 

1=0 Z! 
[g + allma, + (1 - a2/mal) I ]  sinh &[1- 4O2(Z + 12)]*} 

+[I - 4eyz + 1 2 ) p  
+ 

We note that (27) is appropriately invariant if the stagnation counterflow is inverted. 
The factor [ e - .  appearing in (27) arises because of the stretching of the initial per- 

turbation wavelength by the accelerating unperturbed shear flow. This behaviour is 
easily demonstrated by considering the mean unperturbed fluid velocity 

u = (P1 Ul + P 2  U2)/(Pl+ P2) = ma1 x- (28a, b )  

By equating the wavelength stretching rate dhldt to u(x + A )  - u ( ~ )  and integrating, 
it is found that the wavelength increases as h = A, e7. Therefore 

5e-7 = 2nx/(hOe7) = 2nxlA 

represents the x position non-dimensionalized by the stretched wavelength. 
A qualitative understanding of the growth and eventual decay of the displacement 

perturbations can be gained by considering an upper bound for the right-hand side of 
(27): 

= s[t +W+ (mal)-l ( 1  all + fa2[ exp ([e-7). (29) 
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Hence, at  intermediate times 7 = O( l ) ,  the interface displacement may attain a maxi- 
mum value proportional to se6, but, at  large times when 7 B 1, the displacement will 
decay to O(e) .  Note that the ec factor arises from the fact that the x components of the 
unperturbed velocities grow linearly with for the stagnation flows. For the more 
general unperturbed velocity profiles considered in appendix A, the velocities approach 
constant values at  large 5, and the perturbed interface would cease to grow with .$ at 
sufficiently large c. 

For 7 = 0, (27) and its derivative with respect to T can be summed directly to give the 
initial conditions (7) and (8). 

The limit Ee-7 p 1 

The limit 5e-7 9 1 of (27) illustrates the growth of a disturbance of small wavelength 
at  early times. In this limit, the large-1 terms make the greatest contribution to the 
summation. Consequently, by approximating each term in (27) by its large4 limit, the 
summation may be carried out to give 

x cos [5e+ cos (197) +a] cosh [(e-. sin ( O T ) ]  

+ [sin (:) - 8-1 (1  - z) cos (:)I 
x sin [ E e l  cos (07) +a] sinh [[ e-. sin (&)I . (30) I 

Equation (30) shows that for Ce-. p 1 the displacement has the upper bound 

7(6,7) < ~ ( 1 + 6 - ~ 1 1 -  a,/ma,I)exp [Ee-. - 471. 
The fact that this maximum amplitude is proportional to sexp (Ee-.) agrees with the 
qualitative discussion in the introduction to this section. We note that the sinusoidal 
variation with distance involves the non-dimensional stretched co-ordinate 6 e-r 

multiplied by a sinusoidal function of time. 
When 7 < 1, a fluid particle will have travelled only a small relative distance from its 

initial position. Therefore the fluid particle will experience a nearly constant unper- 
turbed velocity for 7 < 1, and the stagnation-counterflow result should reduce to the 
classical result for perturbations along the interface between two fluids having con- 
stant unperturbed velocities. For 7 < 1 and & = O ( l ) ,  (30) reduces to 

7(8,7) = 6 cos [t( 1 - 7) + a] cosh 0& + 0-1 2 - 1 sin [E( 1 - 7) + a] sinh 6.5 . (31) 

For comparison, the following is the classical perturbation solution for the interface 
displacement between two fluids having constant unperturbed velocities (see Rayleigh 

(32) 
1879): 

where B is a constant and is given by (28a) ,  with U, and U, the constant unperturbed 
velocities. In (31) and (32) the exponential and sinusoidal dependences are equivalent, 
since for the stagnation counterflow ko(plp,)*l U, - U,l t / ( p ,  +pz)  = 0E3 and 

( (:a1 ) I 
7 ( x , t )  = BexP{[k,(P,P,)+l~,- Vll t / (P l+P , ) l - iko [x -  BtIL 

ko(x -  Bt) = E(1-7). 

Equations (31) and (32) would be identical if the solution (32) were derived for the same 
initial conditions as (31). 
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The limit 5e- .  < 1 

The limit ce-. < 1 corresponds to the situation in which the point x lies near the 
beginning of the first (stretched) disturbance wavelength. Even when t; B 1, the factor 
ce-. becomes small when 7 is sufficiently large. 

For ee- .  < 1, q(c, 7 )  can be approximated by the leading terms in (27), of which the 
first two are 

+ [ 3 + 2 (-)I (1 - 8O2)-4 sinh [97( 1 - S82)4]). (33) 

Thus at  6 = 0 the perturbation displacement varies from the initial value of B cos a to 
the value s[l + (cr,/ma,)] cosa as T +  00 (the latter displacement value also occurs at  
finite 5 when ce-.--f 0). 

The limit r = 1 

The limit r = 1 occurs when both stagnation flows have the same density and the same 
unperturbed velocity. In  this case 8 = 0, and (27) can be summed to yield 

q(t;,7) = e ( [ l + l ( l - e - ' )  cos(ee-.+a)+ 2 - 1  (l-e-.)(t;e-.)sin(~e-.+ct) . (34) 

For small 7, (34) shows that the displacement grows linearly with 7.  Equation (34) 
for small 7 and 67 = O( 1) corresponds to the famous 'flapping sail ' limit of classical 
theory (see Rayleigh 1879). The reason for the linear growth in time is that the hori- 
zontal perturbation velocities, as can be seen in (B 5 ) ,  have opposite signs across the 
interface, thereby creating a shear instability. 

For large 7, the displacement perturbation (34) approaches a constant value O(E) .  

ma1 

a1 1 (9 ) 1 

5. The axisymmetric case 
Planar stagnation counterflows may be superposed to yield an axisymmetric stagna- 

tion counterflow. Consider a planar solution in which the x axis makes an angle 8 with 
respect to a fixed direction given by the co-ordinate P, where x = P cos 8. Then a proper 
summation over planar solutions is achieved by dividing by 2n and integrating over 
6 from 0 to 2n, while keeping i: constant. Such an integration transforms the unper- 
turbed planar potential $j(x, y) into the axisymmetric potential $j(P, y) = &(i2 - 2y2). 

A similar integration over 8 may be carried out for the perturbed interface displace- 
ment. It is appropriate to assume ct = 0 because antisymmetric disturbances will 
cancel out in the superposition of planar solutions. The resulting interface displace- 
ment for the axisymmetric case is 

where R E k, P. The ratio of gamma functions may be expressed as 

r (n  + *)/r(n + 1) = [l . 3 . 5 . .  .(2n - l)] d / [ 2 . 4 . 6 . .  . Zn]. 
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The solution (35) corresponds to the initial conditions 7 = EJ,(R) and 

ay/at = e[c lJO(R)  +c2RJ,(R)] at t = 0. 

In view of the similarities between (26) and (35)) it is concluded that perturbations in 
the axisymmetric case behave in the same manner as the planar perturbations dis- 
cussed in the preceding section. 

Appendix A. An example of an embedded stagnation counterflow 
In order to study further the large-x behaviour of a stagnation counterflow, we 

consider more realistic velocity profiles which approach constant values at  large x; 
i.e. the x components of the unperturbed velocities for x > 0 are assumed to be given by 

where the aj are related by (3 )  and b is a positive constant. With the velocity profile 
(A 1 )  equations (4)-(6) retain the same form, but with a l x  replaced by a,x/(l +bx). 

After multiplying by I + bx, the Fourier transforms of the new equations may be 
taken to yield equations similar to (12)-(14)' but with the o p a t o r  a/at replaced by 
[I + ib  a/ak] a/at and the F, on the left-hand sides of (1  2) and (13 j replaced by 

After much algebraic manipulation the resulting equations may be combined to yield 
a single differential equation for Y ,  which involves third-order derivatives in k. The 
inverse Fourier transform then yields the following differential equation : 

U;.(X, 0) = aj X I (  I + bx), (A 1 )  

[I + (ib/k) + ib a/ak] 4. 

(2 :i:t) + 3(bx) (1 +bx) ( I  + r 2 )  - a27 = 0. (A 2) 
at2 

+a,(bx)(l+r) -+4x- 

In the limit bx --f 0 equation (A 2) reduces to the first bracketed term, which is identi- 
cal to the equation (15) for the stagnation-counterflow problem. Thus (15) may be 
derived as the small bx expansion for the problem having the unperturbed velocity 
(A 1) .  This derivation avoids the consideration of unbounded velocities as x+ GO. It 
is noted that for bx 1 the second bracketed term in (A 2) becomes dominant, yielding 
(for periodic initial conditions) the appropriate Kelvin-Helmholtz solution of the form 
of (32) for the constant unperturbed velocities U, -+ a,/b and U2 +a2/b. 

Appendix B. The perturbation velocity potentials 
We can construct the appropriate $j from the 7 solution (26) by means of the kine- 

matic boundary conditions (5) and (6))  Laplace's equation ( 1 )  and the conditions at  
y = i GO. An integral form for the interface displacement is 

where F(w,  7) = .k-'[G( 1 - S, T)]. ,J 
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Equation (B 1) may be verified by comparing its Mellin transform with the Mellin 
transform of (23). 

Since we have non-dimensionalized x to ( and t to 7,  for consistency we define 
5 = k, y. Then by substituting (B 1 )  into ( 5 )  and (6), we determine a$#[ at 5 = 0. In 
order to extend the a$#c expression to finite values of 5, solutions to Laplace's equa- 
tion are constructed by appropriately including exp ( - w[ sgn 5)  and 

in the integrand. After integration with respect to 6 the following result is obtained: 
5 sgn 5-p ( - w5 sgn 5)  

where y = 1 in $1, y 3 I /T  in $z. I 
The dynamic boundary condition given by (4) requires x and t derivatives of the 

velocity potential only at  5 = 0. Accordingly, we set 5 = 0 in (B 2) and evaluate the 
integral by a change of variable. The latter is introduced formally by applying a 
Mellin transform, interchanging the order of integration and then taking the inverse 
Mellin transform. Equation (B 2) becomes 

where 0 < N < 1. Equation (B 3) is evaluated by the same procedure as that used for 
(23), giving 

#j(tS, 097) = ko z=o =I! (-')'cos( -:+a) a7 G(l--Z,7).  ( B  4 )  
( - l ) j U 1 €  a 

The horizontal perturbation velocities at  the interface are 

The following vertical perturbation velocities at the interface are found by computing 
[aq5j/i?c]c=o from (B 2) and then following a procedure similar to that used in deriving 
(B 4), or by substituting (26) into (5) and (6): 

For a verification of the solution given by (26), (B 4), (B 5)  and (B 6), direct substitu- 
tion shows that the boundary conditions (4)-( 6) are satisfied. Furthermore, the $j 
solution (B 2) satisfies Laplace's equation ( 1 ) .  
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